Background: An unbalance in the renin-angiotensin (Ang) system (RAS) between the Ang II/AT1 and Ang-(1-7)/Mas axis appears to be involved in preeclampsia (PE), in which a reduction in Ang-(1-7) was observed. Here, we tested whether the reduction in the activity of the Ang-(1-7)/Mas axis could be a contributing factor for the development of PE, using Mas-deficient (Mas-/-) mice.
Methods and results: Cardiovascular parameters were evaluated by telemetry before, during pregnancy and 4 days postpartum in 20-week-old Mas-/- and wild-type (WT) female mice. Mas-/- mice presented reduced arterial blood pressure (BP) at baseline (91.3 ± 0.8 in Mas-/- vs. 94.0 ± 0.9 mmHg in WT, Diastolic, P<0.05). However, after the 13th day of gestation, BP in Mas-/- mice started to increase, time-dependently, and at day 19 of pregnancy, these animals presented a higher BP in comparison with WT group (90.5 ± 0.7 in Mas-/- vs. 80.3 ± 3.5 mmHg in WT, Diastolic D19, P<0.0001). Moreover, pregnant Mas-/- mice presented fetal growth restriction, increase in urinary protein excretion as compared with nonpregnant Mas-/-, oliguria, increase in cytokines, endothelial dysfunction and reduced ACE, AT1R, ACE2, ET-1A, and eNOS placental mRNA, similar to some of the clinical manifestations found in the development of PE.
Conclusions: These results show that Mas-deletion produces a PE-like state in FVB/N mice.
Keywords: Angiotensin-(1-7) / Mas axis; Mas-deficient mice; preeclampsia.
© 2023 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.