Partial replacement of d-glucose with d-allose ameliorates peritoneal injury and hyperglycaemia induced by peritoneal dialysis fluid in rats

Perit Dial Int. 2024 Mar;44(2):125-132. doi: 10.1177/08968608231184354. Epub 2023 Jul 31.

Abstract

Background: Peritoneal dialysis (PD) is a crucial dialysis method for treating end-stage kidney disease. However, its use is restricted due to high glucose-induced peritoneal injury and hyperglycaemia, particularly in patients with diabetes mellitus. In this study, we investigated whether partially replacing d-glucose with the rare sugar d-allose could ameliorate peritoneal injury and hyperglycaemia induced by peritoneal dialysis fluid (PDF).

Methods: Rat peritoneal mesothelial cells (RPMCs) were exposed to a medium containing d-glucose or d-glucose partially replaced with different concentrations of d-allose. Cell viability, oxidative stress and cytokine production were evaluated. Sprague-Dawley (SD) rats were administrated saline, a PDF containing 4% d-glucose (PDF-G4.0%) or a PDF containing 3.6% d-glucose and 0.4% d-allose (PDF-G3.6%/A0.4%) once a day for 4 weeks. Peritoneal injury and PD efficiency were assessed using immuno-histological staining and peritoneal equilibration test, respectively. Blood glucose levels were measured over 120 min following a single injection of saline or PDFs to 24-h fasted SD rats.

Results: In RPMCs, the partial replacement of d-glucose with d-allose increased cell viability and decreased oxidative stress and cytokine production compared to d-glucose alone. Despite the PDF-G3.6%/A0.4% having a lower d-glucose concentration compared to PDF-G4.0%, there were no significant changes in osmolality. When administered to SD rats, the PDF-G3.6%/A0.4% suppressed the elevation of peritoneal thickness and blood d-glucose levels induced by PDF-G4.0%, without impacting PD efficiency.

Conclusions: Partial replacement of d-glucose with d-allose ameliorated peritoneal injury and hyperglycaemia induced by high concentration of d-glucose in PDF, indicating that d-allose could be a potential treatment option in PD.

Keywords: d-Allose; peritoneal dialysis; rare sugar.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cytokines
  • Dialysis Solutions / adverse effects
  • Glucose
  • Humans
  • Hyperglycemia* / pathology
  • Peritoneal Dialysis* / adverse effects
  • Peritoneal Dialysis* / methods
  • Peritoneum / pathology
  • Rats
  • Rats, Sprague-Dawley

Substances

  • allose
  • Dialysis Solutions
  • Glucose
  • Cytokines