Expression of CsSCL1 and Rooting Response in Chestnut Leaves Are Dependent on the Auxin Polar Transport and the Ontogenetic Origin of the Tissues

Plants (Basel). 2023 Jul 16;12(14):2657. doi: 10.3390/plants12142657.

Abstract

The mechanisms underlying the de novo regeneration of adventitious roots are still poorly understood, particularly in trees. We developed a system for studying adventitious rooting (AR) at physiological and molecular levels using leaves excised from chestnut microshoots of the same genotype but with two distinct ontogenetic origins that differ in rooting competence. Leaves were treated with auxin and N-1-naphthyl-phthalamic acid (NPA), an inhibitor of auxin polar transport (PAT). The physiological effects were investigated by recording rooting rates and the number and quality of the roots. Molecular responses were examined by localizing and monitoring the changes in the expression of CsSCL1, an auxin-inducible gene in juvenile and mature shoots during AR. The rooting response of leaves was ontogenetic-stage dependent and similar to that of the donor microshoots. Initiation of root primordia and root development were inhibited by application of NPA, although its effect depended on the timing of application. CsSCL1 was upregulated by auxin only in rooting-competent leaves during the novo root organogenesis, and the expression was reduced by NPA. The inhibitory effect on gene expression was detected during the reprograming of rooting competent cells towards root initials in response to auxin, indicating that PAT-mediated upregulation of CsSCL1 is required in the initial steps of AR in chestnut leaves. The localized expression of CsSCL1 in the quiescent center (QC) also suggests a role for this gene in the maintenance of meristematic competence and root radial patterning.

Keywords: Castanea sativa; N-1-naphthyl-phthalamic acid; Scarecrow-like 1; in vitro leaves; indole-3-butyric acid; maturation stage; root regeneration.