Acoustic indices as proxies for bird species richness in an urban green space in Metro Manila

PLoS One. 2023 Jul 28;18(7):e0289001. doi: 10.1371/journal.pone.0289001. eCollection 2023.

Abstract

We assessed eight acoustic indices as proxies for bird species richness in the National Science Complex (NSC), University of the Philippines Diliman. The acoustic indices were the normalized Acoustic Complexity Index (nACI), Acoustic Diversity Index (ADI), inverse Acoustic Evenness Index (1-AEI), Bioacoustic Index (BI), Acoustic Entropy Index (H), Temporal Entropy Index (Ht), Spectral Entropy Index (Hf), and Acoustic Richness Index (AR). Low-cost, automated sound recorders using a Raspberry Pi were placed in three sites at the NSC to continuously collect 5-min sound samples from July 2020 to January 2022. We selected 840 5-min sound samples, equivalent to 70 hours, through stratified sampling and pre-processed them before conducting acoustic index analysis on the raw and pre-processed data. We measured Spearman's correlation between each acoustic index and bird species richness obtained from manual spectrogram scanning and listening to recordings. We compared the correlation coefficients between the raw and pre-processed.wav files to assess the robustness of the indices using Fisher's z-transformation. Additionally, we used GLMMs to determine how acoustic indices predict bird species richness based on season and time of day. The Spearman's rank correlation and GLMM analysis showed significant, weak negative correlations between the nACI, 1-AEI, Ht, and AR with bird species richness. The weak correlations suggest that the performance of acoustic indices are dependent on various factors, such as the local noise conditions, bird species composition, season, and time of day. Thus, ground-truthing of the acoustic indices should be done before applying them in studies. Among the eight indices, the nACI was the best-performing index, performing consistently across sites and independently of season and time of day. We highlight the importance of pre-processing sound data from urban settings and other noisy environments before acoustic index analysis, as this strengthens the correlation between index values and bird species richness.

MeSH terms

  • Acoustics
  • Animals
  • Biodiversity*
  • Birds
  • Ecosystem
  • Parks, Recreational*
  • Philippines

Grants and funding

The author(s) received no specific funding for this work.