In this study, a simple, rapid, and ultrasensitive technique was developed to identify five pairs of phenothiazine drugs by using ultrasound-enhanced and surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME), field-amplified sample injection with capillary electrophoresis (FASI-CE), and capacitively coupled capacitively coupled contactless conductivity detection (C4D). During the CE separation process, UESA-DLLME was used for sample clean-up and offline concentration, and FASI-CE was used for the online concentration of phenothiazine enantiomers. At baseline, the five pairs of phenothiazine enantiomer drugs required 18 min for separation. UESA-DLLME was then used to extract 0.01 mM Tween 80 at pH 10 from a sample solution (extraction solvent, 100 mL of dichloromethane). Subsequently, FASI was used to stack the sample solution (buffer, 30 mM 2-(N-morpholino)ethanesulfonic acid/aspartic acid, additive 4 mM hydroxypropyl-γ-cyclodextrin, pH 2.5), and C4D was used for signal detection (amplitude, 2 Vpp; frequency, 400 kHz). The results indicated that the linear range for quantifying all analyte enantiomers was 1.0-150 nM, with a coefficient of determination exceeding 0.99. In addition, the relative standard deviations in the migration time and peak areas for the 10 analytes were less than 3.2% and 7.2%, respectively. The proposed system has a limit of detection (LOD) for the 10 analytes at a signal-to-noise ratio of 3, ranging from 0.24 to 0.28 nM. The sensitivity enhancement, which compares the LOD0 (limit of detection in the normal method) to LOD1 (limit of detection achieved using the proposed UESA-DLLME-FASI-CE-C4D method), varies between approximately 1200 and 2000 for the 10 analytes. Analysis of the 10 separated analytes spiked in urine and serum samples revealed recovery rates of 88%-106% and 89%-105%, respectively. Therefore, this highly sensitive advanced technique was successfully used to analyze phenothiazine enantiomers in urine and serum samples.
Keywords: Capacitively coupled contactless conductivity detection; Capillary electrophoresis; Filed amplified sample injection; Phenothiazines enantiomers; Ultrasound and surfactant-assisted dispersive liquid-liquid microextraction.
Copyright © 2023. Published by Elsevier B.V.