Highly Efficient Propyne/Propylene Separation in a "Flexible-Robust" and Hydrolytically Stable Cu(II)-MOF

Inorg Chem. 2023 Aug 7;62(31):12329-12336. doi: 10.1021/acs.inorgchem.3c01285. Epub 2023 Jul 21.

Abstract

Propyne/propylene separation is important in the petrochemical industry but challenging due to their similar physical properties and close molecular sizes. Metal-organic frameworks (MOFs) are a class of promising adsorbents for light hydrocarbon separations. Among them, the so-called "flexible-robust" MOFs combine the advantages of flexibility and rigidity in structure and could show enhanced gas separation selectivity as well as improved gas uptake at low pressure. Interpenetrated MOFs offer a platform to explore the "flexible-robust" feature of MOFs based on their subnetwork displacement in the process of gas adsorption. Herein, we present two hydrolytically stable MOFs (BUT-308 and BUT-309) with interpenetrated structures and fascinating propyne/propylene separation performance. BUT-308 is composed of interpenetrated 2D Cu(BDC-NH2)BPB layers (H2BDC-NH2 = 2-aminobenzene-1,4-dicarboxylic acid; BPB = 1,4-bis(4-pyridyl)benzene), while BUT-309 consists of twofold interpenetrated 3D pillared-layer Cu2(BDC-NH2)2(BPB-CF3) nets (BPB-CF3 = 2-trifluoromethyl-1,4-bis(4-pyridyl)benzene). Gas adsorption measurements showed that BUT-309 was a "flexible-robust" adsorbent with multistep adsorption isotherms for C3H4 rather than C3H6 at a wide temperature range. The guest-dependent pore-opening behavior endows BUT-309 with high potential in the C3H4/C3H6 separation. The C3H4 adsorption measurements of BUT-309 at 273-323 K showed that the lowering of the temperature induced the pore-opening action at lower pressure. Column breakthrough experiments further confirmed the capability of BUT-309 for the efficient removal of C3H4 from a C3H4/C3H6 binary gas, and the C3H6 processing capacity at 273 K (15.7 cm3 g-1) was higher than that at 298 K (35.2 cm3 g-1). This work shows a rare example of "flexible-robust" MOFs and demonstrated its high potential for C3H4/C3H6 separation.