Advances in anti-invasive fungal drug delivery systems

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023 Jun 25;52(3):318-327. doi: 10.3724/zdxbyxb-2023-0030.
[Article in English, Chinese]

Abstract

Currently, the first-line drugs for invasive fungal infections (IFI), such as amphotericin B, fluconazole and itraconazole, have drawbacks including poor water solubility, low bioavailability, and severe side effects. Using drug delivery systems is a promising strategy to improve the efficacy and safety of traditional antifungal therapy. Synthetic and biomimetic carriers have greatly facilitated the development of targeted delivery systems for antifungal drugs. Synthetic carrier drug delivery systems, such as liposomes, nanoparticles, polymer micelles, and microspheres, can improve the physicochemical properties of antifungal drugs, prolong their circulation time, enhance targeting capabilities, and reduce toxic side effects. Cell membrane biomimetic drug delivery systems, such as macrophage or red blood cell membrane-coated drug delivery systems, retain the membrane structure of somatic cells and confer various biological functions and specific targeting abilities to the loaded antifungal drugs, exhibiting better biocompatibility and lower toxicity. This article reviews the development of antifungal drug delivery systems and their application in the treatment of IFI, and also discusses the prospects of novel biomimetic carriers in antifungal drug delivery.

目前用于治疗侵袭性真菌感染(IFI)的一线药物如两性霉素B、氟康唑和伊曲康唑等存在水溶性差、生物利用度低、毒副作用强等缺点,将药物与递送系统相结合,使其能够更有效地到达感染部位,是提高传统抗真菌药物治疗效果和安全性的良好策略。合成及仿生载体极大地促进了抗真菌药物靶向递送系统的发展。合成载体递药系统如脂质体、纳米粒、聚合物胶束、微球等,能改善抗真菌药物的理化性质、延长其血液循环时间、提高靶向性和降低毒副作用;细胞膜仿生载体递药系统如巨噬细胞膜、红细胞膜包裹递药系统等,保留了体细胞的膜结构,用来包载抗真菌药物能赋予其各种生物功能和特异靶向性,表现出更好的生物相容性和更低的毒性。本文就不同类型的抗真菌药物递送系统在治疗IFI方面的应用进行综述,同时展望了新型仿生载体在抗真菌药物递送方面的广阔前景。.

Keywords: Antifungal infection drugs; Biomimetic carrier; Drug delivery system; Invasive fungal infection; Review; Synthetic carrier.

Publication types

  • Review

MeSH terms

  • Amphotericin B / pharmacology
  • Amphotericin B / therapeutic use
  • Antifungal Agents* / chemistry
  • Antifungal Agents* / pharmacology
  • Antifungal Agents* / therapeutic use
  • Drug Carriers
  • Drug Delivery Systems
  • Liposomes / chemistry
  • Nanoparticles*

Substances

  • Antifungal Agents
  • Amphotericin B
  • Liposomes
  • Drug Carriers