Electrostatic Linear Ion Trap Optimization Strategy for High Resolution Charge Detection Mass Spectrometry

J Am Soc Mass Spectrom. 2023 Aug 2;34(8):1731-1740. doi: 10.1021/jasms.3c00177. Epub 2023 Jul 19.

Abstract

Single ion mass measurements allow mass distributions to be recorded for heterogeneous samples that cannot be analyzed by conventional mass spectrometry. In charge detection mass spectrometry (CD-MS), ions are detected using a conducting cylinder coupled to a charge sensitive amplifier. For optimum performance, the detection cylinder is embedded in an electrostatic linear ion trap (ELIT) where trapped ions oscillate between end-caps that act as opposing ion mirrors. The oscillating ions generate a periodic signal that is analyzed by fast Fourier transforms. The frequency yields the m/z, and the magnitude provides the charge. With a charge precision of 0.2 elementary charges, ions can be assigned to their correct charge states with a low error rate, and the m/z resolving power determines the mass resolving power. Previously, the best mass resolving power achieved with CD-MS was 300. We have recently increased the mass resolving power to 700, through the better optimization of the end-cap potentials. To make a more dramatic improvement in the m/z resolving power, it is necessary to find an ELIT geometry and end-cap potentials that can simultaneously make the ion oscillation frequency independent of both the ion energy and ion trajectory (angular divergence and radial offset) of the entering ion. We describe an optimization strategy that allows these conditions to be met while also adjusting the signal duty cycle to 50% to maximize the signal-to-noise ratio for the charge measurement. The optimized ELIT provides an m/z resolving power of over 300 000 in simulations. Coupled with the high precision charge determination available with CD-MS, this will yield a mass resolving power of 300 000. Such a high mass resolving power will be transformative for the analysis of heterogeneous samples.