The investigation of in-plane two-dimensional (2D) anisotropic materials has garnered significant attention due to their exceptional electronic, optical, and mechanical characteristics. The anisotropic optical properties and angle-dependent photodetectors based on 2D anisotropic materials have been extensively studied. However, novel in-plane anisotropic materials still need to be explored to satisfy for distinct environments and devices. Here, we report the remarkable anisotropic behavior of excitons and demonstrate a unique linear-dichroism transition of absorption between ultraviolet and visible light in layered silicon phosphide (SiP) through the analysis of polarization photoluminescence (PL) and absorbance spectra. Its high absorption linear dichroism ratio of 1.16 at 388 nm, 1.15 at 532 nm, and 1.19 at 733 nm is revealed, suggesting the brilliant non-isotropic responses. The robust periodic variation of the A1 and A2 Raman modes in 2D SiP materials allows for the determination of their crystal orientation. Furthermore, the presence of indirect excitons with phonon sidebands in the temperature-dependent PL spectra exhibits non-monotonic energy shifts with increasing temperature, which is attributed to an enhanced electron-phonon interaction and thermal expansion. Our findings provide valuable insights into the fundamental physical properties of layered SiP and offer guidelines for designing polarization-sensitive photodetectors and angle-dependent devices based on 2D anisotropic materials.