There has been limited success in the usage of exogenous small interference RNA (siRNA) or small hairpin RNA (shRNA) to trigger RNA interference (RNAi) in insects. Instead, long double-stranded RNAs (dsRNA) are used to induce knockdown of target genes in insects. Here, we compared the potency of si/sh RNAs and dsRNA in Colorado potato beetle (CPB) cells. CPB cells showed highly efficient RNAi response to dsRNA. However, si/sh RNAs were inefficient in triggering RNAi in CPB cells. Confocal microscopy observations of Cy3 labeled-si/sh RNA cellular uptake revealed reduced si/sh RNA uptake compared to dsRNA. si/sh RNAs were stable in the conditioned media of CPB cells. Although in a small amount, when internalized by CPB cells, the si/sh RNAs were processed by the Dicer enzyme. Lipid-mediated transfection and chimeric dsRNA approaches were used to improve the delivery of si/sh RNAs. Our results suggest that the uptake of si/sh RNAs is inefficient in CPB cells, resulting in ineffective RNAi response. However, with the help of effective delivery methods, si/sh RNA could be a useful option for developing target-specific RNAi-mediated biopesticides.
Keywords: RNAi; cellular uptake; shRNA; siRNA.
© 2023 Wiley Periodicals LLC.