Iron, Cobalt, and Nickel Phthalocyanine Tri-Doped Electrospun Carbon Nanofibre-Based Catalyst for Rechargeable Zinc-Air Battery Air Electrode

Materials (Basel). 2023 Jun 27;16(13):4626. doi: 10.3390/ma16134626.

Abstract

The goal of achieving the large-scale production of zero-emission vehicles by 2035 will create high expectations for electric vehicle (EV) development and availability. Currently, a major problem is the lack of suitable batteries and battery materials in large quantities. The rechargeable zinc-air battery (RZAB) is a promising energy-storage technology for EVs due to the environmental friendliness and low production cost. Herein, iron, cobalt, and nickel phthalocyanine tri-doped electrospun carbon nanofibre-based (FeCoNi-CNF) catalyst material is presented as an affordable and promising alternative to Pt-group metal (PGM)-based catalyst. The FeCoNi-CNF-coated glassy carbon electrode showed an oxygen reduction reaction/oxygen evolution reaction reversibility of 0.89 V in 0.1 M KOH solution. In RZAB, the maximum discharge power density (Pmax) of 120 mW cm-2 was obtained with FeCoNi-CNF, which is 86% of the Pmax measured with the PGM-based catalyst. Furthermore, during the RZAB charge-discharge cycling, the FeCoNi-CNF air electrode was found to be superior to the commercial PGM electrocatalyst in terms of operational durability and at least two times higher total life-time.

Keywords: bifunctional catalyst; carbon nanofibres; carbon nanomaterial; electrocatalysis; electrospinning; metal phthalocyanine; non-precious metal catalyst; oxygen reduction; zinc–air battery.