Viruses are the most ubiquitous biological entities on Earth. Even so, elucidating the impact of viruses on microbial communities and associated ecosystem processes often requires identification of unambiguous host-virus linkages-an undeniable challenge in many ecosystems. Subsurface fractured shales present a unique opportunity to first make these strong linkages via spacers in CRISPR-Cas arrays and subsequently reveal complex long-term host-virus dynamics. Here, we sampled two replicated sets of fractured shale wells for nearly 800 days, resulting in 78 metagenomes from temporal sampling of six wells in the Denver-Julesburg Basin (Colorado, USA). At the community level, there was strong evidence for CRISPR-Cas defense systems being used through time and likely in response to viral interactions. Within our host genomes, represented by 202 unique MAGs, we also saw that CRISPR-Cas systems were widely encoded. Together, spacers from host CRISPR loci facilitated 2,110 CRISPR-based viral linkages across 90 host MAGs spanning 25 phyla. We observed less redundancy in host-viral linkages and fewer spacers associated with hosts from the older, more established wells, possibly reflecting enrichment of more beneficial spacers through time. Leveraging temporal patterns of host-virus linkages across differing well ages, we report how host-virus co-existence dynamics develop and converge through time, possibly reflecting selection for viruses that can evade host CRISPR-Cas systems. Together, our findings shed light on the complexities of host-virus interactions as well as long-term dynamics of CRISPR-Cas defense among diverse microbial populations.
Keywords: CRISPR-Cas; host-virus dynamics; host-virus linkages; metagenomics; shale; viral defense systems; viruses.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.