Adamantaniline Derivatives Target ATP5B to Inhibit Translation of Hypoxia Inducible Factor-1α

Adv Sci (Weinh). 2023 Sep;10(25):e2301071. doi: 10.1002/advs.202301071. Epub 2023 Jul 3.

Abstract

Hypoxia inducible factor-1α (HIF-1α) plays a critical role in cellular adaptation to hypoxia and it is a potential therapeutic target for anti-cancer drugs. Applying high-throughput screening, here it is found that HI-101, a small molecule containing an adamantaniline moiety, effectively reduces HIF-1α protein expression. With the compound as a hit, a probe (HI-102) is developed for target identification by affinity-based protein profiling. The catalytic β subunit of mitochondrial FO F1 -ATP synthase, ATP5B, is identified as the binding protein of HI-derivatives. Mechanistically, HI-101 promotes the binding of HIF-1α mRNA to ATP5B, thus inhibiting HIF-1α translation and the following transcriptional activity. Further modifications of HI-101 lead to HI-104, a compound with good pharmacokinetic properties, exhibiting antitumor activity in MHCC97-L mice xenograft model, and HI-105, the most potent compound with an IC50 of 26 nm. The findings provide a new strategy for further developing HIF-1α inhibitors by translational inhibition through ATP5B.

Keywords: ATP5B; HIF-1α; adamantaniline derivatives; target identification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • High-Throughput Screening Assays
  • Humans
  • Hypoxia
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Mice
  • Protein Processing, Post-Translational
  • RNA, Messenger / genetics

Substances

  • Antineoplastic Agents
  • RNA, Messenger
  • Hypoxia-Inducible Factor 1, alpha Subunit