Purpose: Routine multiparametric MRI of the prostate reduces overtreatment and increases sensitivity in the diagnosis of the most common solid cancer in men. However, the capacity of MRI systems is limited. Here we investigate the ability of deep learning image reconstruction to accelerate time consuming diffusion-weighted imaging (DWI) acquisition while maintaining diagnostic image quality.
Method: In this retrospective study, raw data of DWI sequences of consecutive patients undergoing MRI of the prostate at a tertiary care hospital in Germany were reconstructed using standard and deep learning reconstruction. To simulate a shortening of acquisition times by 39 %, one instead of two and six instead of ten averages were used in the reconstruction of b = 0 and 1000 s/mm2 images, respectively. Image quality was assessed by three radiologists and objective image quality metrics.
Results: After the application of exclusion criteria, 35 out of 147 patients examined between September 2022 and January 2023 were included in this study. The radiologists perceived less image noise on deep learning reconstructed images at b = 0 s/mm2 images and ADC maps with good inter-reader agreement. Signal-to-noise ratios were similar overall with discretely reduced values in the transitional zone after deep learning reconstruction.
Conclusions: An acquisition time reduction of 39 % without loss in image quality is feasible in DWI of the prostate when using deep learning image reconstruction.
Keywords: Deep learning; Diffusion-weighted imaging; Image quality; Image reconstruction; Magnetic resonance imaging; Prostate cancer.
Copyright © 2023 Elsevier B.V. All rights reserved.