Short tandem repeats located 5' prime to the β-globin gene, have been observed to be in linkage disequilibrium with the HbS allele, and thought to affect the severity of sickle cell disease. Here, we report on new mutants within the HBG2 region that may impact sickle cell disease. To determine the cis-acting elements microsatellites, indels and single nucleotide polymorphisms (SNPs), within the HBG2 region by sequencing, in subjects with sickle cell disease. The case-control study was located at the Center for Clinical Genetics, Sickle cell unit, Korle-Bu Teaching Hospital. A questionnaire was used for demographic data and clinical information. Hematological profile (red blood cell, white blood cell, platelet, hemoglobin and mean corpuscular volume) were assessed in 83 subjects. A set of 45 samples comprising amplified DNA on the HBG2 gene from HbSS (22), HbSC (17) and 6 controls (HbAA) were sequenced. Differences in the microsatellite region between sickle cell disease (SCD) (HbSS and HbSC) genotypes and control subjects were identified by counting and assessed by Chi-square analysis. Red blood cells, hematocrit, platelets, white blood cells and hemoglobin indices differed in genotypic groups. HbSS subjects were affirmed to have severer hemolytic anemia than HbSC subjects. Two indels (T1824 and C905) were seen in both SS and SC genotypes. Two peculiar SNPs: G:T1860 (transition) and A:G1872 transversions were found within the HBG2 gene that were significantly associated with the HbSS genotype (Fisher's exact test, p = 0.006) and HbS allele respectively (Fisher's exact test, p = 0.006). Cis-acting elements in HbSS and HbSC were different and may contribute to the phenotype seen in the disease state.
Keywords: Cis-acting elements; Beta globin gene; Chromosome 11; Short tandem repeats; Sickle cell anemia; Sickle cell disease; Single nucleotide polymorphism; Transition; Transversion.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.