Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine

Adv Sci (Weinh). 2023 Sep;10(25):e2301764. doi: 10.1002/advs.202301764. Epub 2023 Jul 3.

Abstract

Recent considerable technological advances in ultrasound-based treatment modality provides a magnificent prospect for scientific communities to conquer the related diseases, which is featured with remarkable tissue penetration, non-invasive and non-thermal characteristics. As one of the critical elements that influences treatment outcomes, titanium (Ti)-based sonosensitizers with distinct physicochemical properties and exceptional sonodynamic efficiency have been applied extensively in the field of nanomedical applications. To date, a myriad of methodologies has been designed to manipulate the sonodynamic performance of titanium-involved nanomedicine and further enhance the productivity of reactive oxygen species for disease treatments. In this comprehensive review, the sonocatalytic optimization of diversified Ti-based nanoplatforms, including defect engineering, plasmon resonance modulation, heterojunction, modulating tumor microenvironment, as well as the development of synergistic therapeutic modalities is mainly focused. The state-of-the-art Ti-based nanoplatforms ranging from preparation process to the extensive medical applications are summarized and highlighted, with the goal of elaborating on future research prospects and providing a perspective on the bench-to-beside translation of these sonocatalytic optimization tactics. Furthermore, to spur further technological advancements in nanomedicine, the difficulties currently faced and the direction of sonocatalytic optimization of Ti-based therapeutic nanomedicine are proposed and outlooked.

Keywords: sonocatalytic; sonodynamic therapy; sonosensitizers; titanium-based nanomedicine; ultrasound therapy.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Nanomedicine*
  • Reactive Oxygen Species
  • Titanium / chemistry
  • Ultrasonic Therapy* / methods
  • Ultrasonography

Substances

  • Titanium
  • Reactive Oxygen Species