Ultraviolet metalens for photoacoustic microscopy with an elongated depth of focus

Opt Lett. 2023 Jul 1;48(13):3435-3438. doi: 10.1364/OL.485946.

Abstract

Ultraviolet photoacoustic microscopy (UV-PAM) can achieve in vivo imaging without exogenous markers and play an important role in pathological diagnosis. However, traditional UV-PAM is unable to detect enough photoacoustic signals due to the very limited depth of focus (DOF) of excited light and the sharp decrease in energy with increasing sample depth. Here, we design a millimeter-scale UV metalens based on the extended Nijboer-Zernike wavefront-shaping theory which can effectively extend the DOF of a UV-PAM system to about 220 μm while maintaining a good lateral resolution of 1.063 μm. To experimentally verify the performance of the UV metalens, a UV-PAM system is built to achieve the volume imaging of a series of tungsten filaments at different depths. This work demonstrates the great potential of the proposed metalens-based UV-PAM in the detection of accurate diagnostic information for clinicopathologic imaging.

MeSH terms

  • Microscopy*
  • Spectrum Analysis