Treatment options for patients with NRAS-mutant melanoma are limited and lack an efficient targeted drug combination that significantly increases overall and progression-free survival. In addition, targeted therapy success is hampered by the inevitable emergence of drug resistance. A thorough understanding of the molecular processes driving cancer cells' escape mechanisms is crucial to tailor more efficient follow-up therapies. We performed single-cell RNA sequencing of NRAS-mutant melanoma treated with MEK1/2 plus CDK4/6 inhibitors to decipher transcriptional transitions during the development of drug resistance. Cell lines resuming full proliferation (FACs [fast-adapting cells]) and cells that became senescent (SACs [slow-adapting cells]) over prolonged treatment were identified. The early drug response was characterized by transitional states involving increased ion signaling, driven by upregulation of the ATP-gated ion channel P2RX7. P2RX7 activation was associated with improved therapy responses and, in combination with targeted drugs, could contribute to the delayed onset of acquired resistance in NRAS-mutant melanoma.
Keywords: CP: Cancer; MEK/CDK4/6 co-inhibition; NRAS-mutant melanoma; P2RX7; drug resistance; single-cell RNA-sequencing.
Copyright © 2023 University of Luxembourg. Published by Elsevier Inc. All rights reserved.