Real-world objects are usually defined in terms of their own relationships or connections. A graph (or network) naturally expresses this model though nodes and edges. In biology, depending on what the nodes and edges represent, we may classify several types of networks, gene-disease associations (GDAs) included. In this paper, we presented a solution based on a graph neural network (GNN) for the identification of candidate GDAs. We trained our model with an initial set of well-known and curated inter- and intra-relationships between genes and diseases. It was based on graph convolutions, making use of multiple convolutional layers and a point-wise non-linearity function following each layer. The embeddings were computed for the input network built on a set of GDAs to map each node into a vector of real numbers in a multidimensional space. Results showed an AUC of 95% for training, validation, and testing, that in the real case translated into a positive response for 93% of the Top-15 (highest dot product) candidate GDAs identified by our solution. The experimentation was conducted on the DisGeNET dataset, while the DiseaseGene Association Miner (DG-AssocMiner) dataset by Stanford's BioSNAP was also processed for performance evaluation only.
Keywords: deep learning; gene disease associations; graph neural network; link prediction; neural network.