Novel Essential Oils Blend as a Repellent and Toxic Agent against Disease-Transmitting Mosquitoes

Toxics. 2023 Jun 8;11(6):517. doi: 10.3390/toxics11060517.

Abstract

Bio-insecticidal research has focused on long-term vector control using essential oils (EOs). This study examined the larvicidal, oviposition-deterrent, and repellent properties of five medicinal herb-based EO formulations (EOFs) on mosquitoes that are vectors of dengue, filariasis, and malaria. EOFs were significantly more toxic to the larvae and pupae of Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti with LC50 = 9.23, 12.85, and 14.46 ppm, as well with 10.22, 11.39, and 12.81 ppm, with oviposition active indexes of -0.84, -0.95, and -0.92, respectively. Oviposition-deterrent repellence was found in 91.39%, 94.83%, and 96.09%. EOs and N, N-Diethyl-3-methylbenzamide (DEET) were prepared at various concentrations for time duration repellent bioassays (6.25-100 ppm). Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were monitored for 300, 270, and 180 min, respectively. At 100 ppm, EOs and DEET had comparable repellence in terms of test durations. EOF's primary components d-limonene (12.9%), 2,6-octadienal, 3,7-dimethyl, (Z) (12.2%), acetic acid, phenylmethyl ester (19.6%), verbenol (7.6%), and benzyl benzoate (17.4%) may be combined to make a mosquito larvicidal and repellant equivalent to synthetic repellent lotions. In the molecular dynamics simulations, limonene (-6.1 kcal/mol) and benzyl benzoate (-7.5 kcal/mol) had a positive chemical association with DEET (-6.3 kcal/mol) and interacted with the OBP binding pocket with high affinity and stability. This research will help local herbal product manufacturers and the cosmetics industry in developing 100% herbal insect repellent products to combat mosquito-borne diseases, including dengue, malaria, and filariasis.

Keywords: essential oil; larvicide; molecular docking; mosquitoes; repellent.