Preliminary evidence of a relationship between sleep spindles and treatment response in epileptic encephalopathy

Ann Clin Transl Neurol. 2023 Sep;10(9):1513-1524. doi: 10.1002/acn3.51840. Epub 2023 Jun 26.

Abstract

Objective: Epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS) is a challenging neurodevelopmental disease characterized by abundant epileptiform spikes during non-rapid eye movement (NREM) sleep accompanied by cognitive dysfunction. The mechanism of cognitive dysfunction is unknown, but treatment with high-dose diazepam may improve symptoms. Spike rate does not predict treatment response, but spikes may disrupt sleep spindles. We hypothesized that in patients with EE-SWAS: (1) spikes and spindles would be anti-correlated, (2) high-dose diazepam would increase spindles and decrease spikes, and (3) spindle response would be greater in those with cognitive improvement.

Methods: Consecutive EE-SWAS patients treated with high-dose diazepam that met the criteria were included. Using a validated automated spindle detector, spindle rate, duration, and percentage were computed in pre- and post-treatment NREM sleep. Spikes were quantified using a validated automated spike detector. The cognitive response was determined from a chart review.

Results: Spindle rate was anti-correlated with the spike rate in the channel with the maximal spike rate (p = 0.002) and averaged across all channels (p = 0.0005). Spindle rate, duration, and percentage each increased, and spike rate decreased, after high-dose diazepam treatment (p ≤ 2e-5, all tests). Spindle rate, duration, and percentage (p ≤ 0.004, all tests) were increased in patients with cognitive improvement after treatment, but not those without. Changes in spindle rate but not changes in spike rate distinguished between groups.

Interpretation: These findings confirm thalamocortical disruption in EE-SWAS, identify a mechanism through which benzodiazepines may support cognitive recovery, and introduce sleep spindles as a promising mechanistic biomarker to detect treatment response in severe epileptic encephalopathies.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Diazepam / pharmacology
  • Electroencephalography
  • Epilepsy, Generalized*
  • Humans
  • Sleep / physiology
  • Sleep Stages* / physiology

Substances

  • Diazepam