Peripheral blood mononuclear cells (PBMCs) are commonly isolated from whole blood samples in clinical trials. Isolated PBMCs can be cryopreserved for use in downstream assays such as flow cytometry, single-cell RNA sequencing (scRNA-seq) and enzyme-linked immunosorbent spot (ELISpot) assays to aid understanding of disease biology and treatment effects, and biomarker identification. However, due to logistical practicalities, delays from blood collection to PBMC processing may exceed 24 h, which can potentially affect PBMC function and, ultimately, downstream assay results. Whole blood samples from 20 healthy adults were collected and incubated at 20-25 °C for 2-48 h before PBMC processing. PBMC viability was measured, and flow cytometry immunophenotyping, scRNA-seq and ELISpot were performed following increasing PBMC processing delays. The RosetteSep™ granulocyte depletion kit was used to evaluate the impact of granulocyte contamination following processing delay. Processed scRNA-seq reads were used to identify cell clusters based on marker genes. scRNA-seq data was further used to determine gene expression correlation and pathway activity score in major PBMC cell types (T cells, B cells, natural killer cells, monocytes and dendritic cells) between PBMC preparations subjected to shorter (2-4 h) and longer (8-48 h) processing delays. ELISpot assays evaluated the impact of processing delays on the number of interferon-γ (IFN-γ) secreting cells from ex vivo stimulated PBMCs. PBMC viability was reduced after a 48-h processing delay. Flow cytometry showed that granulocyte contamination of PBMCs increased after 24 h. Cluster analysis of scRNA-seq data identified 23 immune cell type gene expression clusters that were not significantly changed upon granulocyte depletion. Gene expression correlations across the major PBMC cell types were < 0.8 after 24 h of delay compared with 2 or 4 h of delay. Inflammatory, proliferation and signaling pathway activities increased, whereas IFN-γ and metabolic pathway activities decreased with increasing PBMC processing delays. The number of IFN-γ secreting cells trended towards a reduction as PBMC processing delays increased. PBMC processing delays should be minimised when designing clinical trials to reduce outcome variability in downstream assays. Ideally clinical trial sites should have on-site PBMC processing capabilities or be located close to such facilities.
Keywords: Clinical trial; ELISpot; Flow cytometry; Granulocyte; PBMC processing; Single cell RNA-seq.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.