Monocular blindness impairs visual depth perception, yet patients seldom report difficulties in targeted actions like reaching, walking, or driving. We hypothesized that by utilizing monocular depth information and calibrating actions with haptic feedback, monocular patients can perceive egocentric distance and perform targeted actions. We compared targeted reaching in monocular patients, monocular-viewing, and binocular-viewing normal controls. Sixty observers reached either a far or a near target, calibrating reaches to the near target with accurate or false feedback while leaving reaches to the far target uncalibrated. Reaching accuracy and precision were analyzed. Results indicated no difference in reaching accuracy between monocular patients and normal controls; all groups initially underestimated distances before until calibration. Monocular patients responded to calibration sensitively, achieving accuracy in calibrated reaches and generalizing this effect to uncalibrated distances. Thus, with monocular depth information and haptic feedback, monocular patients could perceive distance and accomplish targeted reaching.
Keywords: Calibration; Egocentric distance perception; Monocular depth information; Monocular patients; Targeted reaching.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.