Metabolic Disturbances in the Gut-brain Axis of a Mouse Model of MPTP-induced Parkinsonism Evaluated by Nuclear Magnetic Resonance

Neuroscience. 2023 Aug 21:526:21-34. doi: 10.1016/j.neuroscience.2023.06.010. Epub 2023 Jun 17.

Abstract

Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by α-synuclein (αSyn) accumulation and loss of mitochondrial homeostasis. We investigated the metabolic alterations in different biometrics that compose the gut-brain axis (blood, brain, large intestine, and feces) in an MPTP-induced mouse model of sporadic Parkinson's Disease. Animals received escalating administration of MPTP. Tissues and fecal pellets were collected, and the metabolites were identified through the untargeted Nuclear Magnetic Resonance spectroscopic (1H NMR) technique. We found differences in many metabolites from all the tissues evaluated. The differential expression of metabolites in these samples mainly reflects inflammatory aspects, cytotoxicity, and mitochondrial impairment (oxidative stress and energy metabolism) in the animal model used. The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. This data reinforces previous studies showing that Parkinson's disease is associated with metabolic perturbation not only in brain-related tissues, but also in periphery structures such as the gut. In addition, the evaluation of the microbiome and metabolites from gut and feces emerge as promising sources of information for understanding the evolution and progression of sporadic Parkinson's Disease.

Keywords: Parkinson’s disease; gut-brain axis; metabolome; neurodegenerative diseases; nuclear magnetic resonance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain-Gut Axis
  • Disease Models, Animal
  • Gastrointestinal Microbiome* / physiology
  • MPTP Poisoning*
  • Magnetic Resonance Spectroscopy
  • Mice
  • Parkinson Disease* / metabolism
  • Parkinsonian Disorders*