Efficacy of COVID-19 mRNA vaccination in patients with autoimmune disorders: humoral and cellular immune response

BMC Med. 2023 Jun 14;21(1):210. doi: 10.1186/s12916-023-02868-w.

Abstract

Background: The impact of immunosuppressive therapies on the efficacy of vaccines to SARS-CoV-2 is not completely clarified. We analyzed humoral and T cell-mediated response after COVID-19 mRNA vaccine in immunosuppressed patients and patients with common variable immunodeficiency disease (CVID).

Patients: We enrolled 38 patients and 11 healthy sex- and age-matched controls (HC). Four patients were affected by CVID and 34 by chronic rheumatic diseases (RDs). All patients with RDs were treated by corticosteroid therapy and/or immunosuppressive treatment and/or biological drugs: 14 patients were treated with abatacept, 10 with rituximab, and 10 with tocilizumab.

Methods: Total antibody titer to SARS-CoV-2 spike protein was assessed by electrochemiluminescence immunoassay, CD4 and CD4-CD8 T cell-mediated immune response was analyzed by interferon-γ (IFN-γ) release assay, the production of IFN-γ-inducible (CXCL9 and CXCL10) and innate-immunity chemokines (MCP-1, CXCL8, and CCL5) by cytometric bead array after stimulation with different spike peptides. The expression of CD40L, CD137, IL-2, IFN-γ, and IL-17 on CD4 and CD8 T cells, evaluating their activation status, after SARS-CoV-2 spike peptides stimulation, was analyzed by intracellular flow cytometry staining. Cluster analysis identified cluster 1, namely the "high immunosuppression" cluster, and cluster 2, namely the "low immunosuppression" cluster.

Results: After the second dose of vaccine, only abatacept-treated patients, compared to HC, showed a reduced anti-spike antibody response (mean: 432 IU/ml ± 562 vs mean: 1479 IU/ml ± 1051: p = 0.0034), and an impaired T cell response, compared with HC. In particular, we found a significantly reduced release of IFN-γ from CD4 and CD4-CD8 stimulated T cells, compared with HC (p = 0.0016 and p = 0.0078, respectively), reduced production of CXCL10 and CXCL9 from stimulated CD4 (p = 0.0048 and p = 0.001) and CD4-CD8 T cells (p = 0.0079 and p = 0.0006). Multivariable General Linear Model analysis confirmed a relationship between abatacept exposure and impaired production of CXCL9, CXCL10, and IFN-γ from stimulated T cells. Cluster analysis confirms that cluster 1 (including abatacept and half of rituximab treated cases) showed a reduced IFN-γ response, as well as reduced monocyte-derived chemokines All groups of patients demonstrated the ability to generate specific CD4 T activated cells after spike proteins stimulation. After the third dose of vaccine, abatacept-treated patients acquired the ability to produce a strong antibody response, showing an anti-S titer significantly higher compared to that obtained after the second dose (p = 0.0047), and comparable with the anti-S titer of the other groups.

Conclusions: Patients treated with abatacept showed an impaired humoral immune response to two doses of COVID-19 vaccine. The third vaccine dose has been demonstrated to be useful to induce a more robust antibody response to balance an impaired T cell-mediated one. All patients, exposed to different immunosuppressive drugs, were able to produce specific CD4-activated T cells, after spike proteins stimulation.

Trial registration: Local Ethical Committee NP4187.

Keywords: Abatacept; Autoimmune diseases; COVID-19 vaccination; Interferon-γ; Rituximab; T cell.

MeSH terms

  • Abatacept
  • Autoimmune Diseases*
  • COVID-19 Vaccines
  • COVID-19* / prevention & control
  • Humans
  • Immunity, Cellular
  • Immunosuppressive Agents / therapeutic use
  • RNA, Messenger
  • Rituximab
  • SARS-CoV-2
  • Spike Glycoprotein, Coronavirus
  • Vaccination

Substances

  • spike protein, SARS-CoV-2
  • Spike Glycoprotein, Coronavirus
  • COVID-19 Vaccines
  • Abatacept
  • Rituximab
  • Immunosuppressive Agents
  • RNA, Messenger