A novel diarylethene-based fluorescence sensor for Zn2+ detection and its application

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Nov 15:301:122960. doi: 10.1016/j.saa.2023.122960. Epub 2023 Jun 1.

Abstract

A series of fluorometric sensors of Zn2+ have been synthesized due to the significant function of Zn2+ in the human body and environment. However, most of probes reported for detecting Zn2+ have high detection limit or low sensitivity. In this paper, an original Zn2+ sensor, namely 1o, was synthesized by diarylethene and 2-aminobenzamide. When Zn2+ was added, the fluorescence intensity of 1o increased by 11 times within 10 s, along with a fluorescence color change from dark to bright blue, and the detection limit (LOD) was calculated to be 0.329 μM. According to Job's plot curves, the binding mode of 1o and Zn2+ was measured as 1:1, which was further proved by 1H NMR spectra, HRMS and FT-IR spectra. The logic circuit was designed to take advantage of the fact that the fluorescence intensity of 1o can be controlled by Zn2+, EDTA, UV and Vis. In addition, Zn2+ in actual water samples were tested, in which the recovery rate of Zn2+ was between 96.5 % and 109 %. Furthermore, 1o was successfully made into a fluorescent test strip, which could be used to detect Zn2+ in the environment economically and conveniently.

Keywords: Diarylethene; Fluorescence sensor; Test paper; Zn(2+) detection.