Objectives: Clostridium perfringens epsilon-toxin is considered to be a crucial agent in enterotoxemia in domestic animals. Epsilon-toxin enters host cells via endocytosis and results in the formation of late endosome/lysosome-derived vacuoles. In the present study, we found that acid sphingomyelinase promotes the internalization of epsilon-toxin in MDCK cells.
Methods: We measured the extracellular release of acid sphingomyelinase (ASMase) by epsilon-toxin. We examined the role of ASMase in epsilon-toxin-induced cytotoxicity using selective inhibitors and knockdown of ASMase. Production of ceramide after toxin treatment was determined by immunofluorescence technique.
Results: Blocking agents of ASMase and exocytosis of lysosomes inhibited this epsilon-toxin-induced vacuole formation. Lysosomal ASMase was liberated to extracellular space during treatment of the cells with epsilon-toxin in the presence of Ca2+. RNAi-mediated attenuation of ASMase blocked epsilon-toxin-induced vacuolation. Moreover, incubation of MDCK cells with epsilon-toxin led to production of ceramide. The ceramide colocalized with lipid raft-binding cholera toxin subunit B (CTB) in the cell membrane, indicating that conversion of lipid raft associated sphingomyelin to ceramide by ASMase facilitates lesion of MDCK cells and internalization of epsilon-toxin.
Conclusions: Based on the present results, ASMase is required for efficient internalization of epsilon-toxin.
Keywords: Acid sphingomyelinase; C. perfringens epsilon-Toxin; Internalization.
Copyright © 2023 Elsevier Ltd. All rights reserved.