Background: Obesity is a well-known risk factor for cancer. We have previously reported the role of adipose-tissue-derived mesenchymal stem cells from obese individuals (ob-ASC) in the promotion of pathogenic Th17 cells and immune check point (ICP) upregulation. Thus, we postulated herein that this mechanism could contribute to breast cancer (BC) aggressiveness.
Methods: Conditioning medium (CM) from mitogen-activated ob-ASC and immune cell co-cultures were added to two human breast cancer cell line (BCCL) cultures. Expressions of pro-inflammatory cytokines, angiogenesis markers, metalloproteinases, and PD-L1 (a major ICP) were measured at the mRNA and/or protein levels. BCCL migration was explored in wound healing assays. Anti-cytokine neutralizing antibodies (Ab) were added to co-cultures.
Results: CM from ob-ASC/MNC co-cultures increased IL-1β, IL-8, IL-6, VEGF-A, MMP-9, and PD-L1 expressions in both BCCLs and accelerated their migration. The use of Abs demonstrated differential effects for IL-17A and IFNγ on BCCL pro-inflammatory cytokine over-expression or PD-L1 upregulation, respectively, but potentiating effects on BCCL migration. Finally, co-cultures with ob-ASC, but not lean ASC, enhanced PD-L1 expression.
Conclusions: Our results demonstrate increased inflammation and ICP markers and accelerated BCCL migration following the activation of pathogenic Th17 cells by ob-ASC, which could represent a new mechanism linking obesity with BC progression.
Keywords: IFNγ; IL-17; PD-L1; adipose-tissue-derived mesenchymal stem cells; breast cancer; cancer progression; immune check points; obesity; pathogenic Th17 cells.