Biochemical fulvic acid derived amorphous carbon modified microcrystalline graphite as low-cost anode for potassium-ion storage

J Colloid Interface Sci. 2023 Oct 15:648:108-116. doi: 10.1016/j.jcis.2023.05.195. Epub 2023 Jun 3.

Abstract

Graphite anode has great potential toward potassium ion storage for abundant reserves, yet it suffers from the large volume expansion and slow diffusion rate. Herein, the low-cost biochemical fulvic acid-derived amorphous carbon (BFAC) is employed to modify the natural microcrystalline graphite (BFAC@MG) by a simple mixed carbonization strategy. The BFAC smooths the split layer and folds on the surface of microcrystalline graphite and builds the heteroatom-doped composite structure, which effectively alleviates the volume expansion caused by K+ electrochemical de-intercalation processes, together with improving electrochemical reaction kinetics. As expected, the optimized BFAC@MG-0.5 exhibits superior potassium-ion storage performance, which delivers a high reversible capacity (623.8 mAh g-1), excellent rate performance (147.8 mAh g-1 at 2 A g-1), and remarkable cycling stability (100.8 mAh g-1 after 1200 cycles). As a practical device application, the potassium-ion capacitors are assembled using the BFAC@MG-0.5 anode and commercial activated carbon cathode, which exhibits a maximum energy density of 126.48 Wh kg-1 and superior cycle stability. Significantly, this work demonstrates the potential of microcrystalline graphite as the host anode material for potassium-ion storage.

Keywords: Anode materials; Heteroatom-doping; Microcrystalline graphite; Potassium-ion capacitors; Volume expansion.