Background and purpose: While contrast-enhanced MR imaging is the criterion standard in meningioma diagnosis and treatment response assessment, gallium 68Ga-DOTATATE PET/MR imaging has increasingly demonstrated utility in meningioma diagnosis and management. Integrating 68Ga-DOTATATE PET/MR imaging in postsurgical radiation planning reduces the planning target volume and organ-at-risk dose. However, 68Ga-DOTATATE PET/MR imaging is not widely implemented in clinical practice due to higher perceived costs. Our study analyzes the cost-effectiveness of 68Ga-DOTATATE PET/MR imaging for postresection radiation therapy planning in patients with intermediate-risk meningioma.
Materials and methods: We developed a decision-analytical model based on both recommended guidelines on meningioma management and our institutional experience. Markov models were implemented to estimate quality-adjusted life-years (QALY). Cost-effectiveness analyses with willingness-to-pay thresholds of $50,000/QALY and $100,000/QALY were performed from a societal perspective. Sensitivity analyses were conducted to validate the results. Model input values were based on published literature.
Results: The cost-effectiveness results demonstrated that 68Ga-DOTATATE PET/MR imaging yields higher QALY (5.47 versus 5.05) at a higher cost ($404,260 versus $395,535) compared with MR imaging alone. The incremental cost-effectiveness ratio analysis determined that 68Ga-DOTATATE PET/MR imaging is cost-effective at a willingness to pay of $50,000/QALY and $100,000/QALY. Furthermore, sensitivity analyses showed that 68Ga-DOTATATE PET/MR imaging is cost-effective at $50,000/QALY ($100,000/QALY) for specificity and sensitivity values above 76% (58%) and 53% (44%), respectively.
Conclusions: 68Ga-DOTATATE PET/MR imaging as an adjunct imaging technique is cost-effective in postoperative treatment planning in patients with meningiomas. Most important, the model results show that the sensitivity and specificity cost-effective thresholds of 68Ga-DOTATATE PET/MR imaging could be attained in clinical practice.
© 2023 by American Journal of Neuroradiology.