Objectives: Investigate the role of the Hippo-YAP signaling pathway in radioresistant Nasopharyngeal Carcinoma (NPC).
Methods: Establishment of radioresistant CNE-1 cells (CNE-1-RR) by gradually increasing ionizing radiation (IR) doses, and identifying the apoptosis of CNE-1-RR by flow cytometry. We employed immunoblot and immunofluorescence staining to detect the expression of YAP in both CNE-1-RR and control group cells. Moreover, we validated the role of YAP in CNE-1-RR by inhibiting its nuclear translocation.
Results: In contrast to the control group, radioresistant NPC cells demonstrated significant YAP dephosphorylation and nuclear translocation. CNE-1-RR cells exhibited enhanced activation of γ-H2AX (Ser139) upon exposure to IR and greater recruitment of double-strand breaks (DSBs) repair-related proteins. Additionally, inhibiting YAP nuclear translocation in radioresistant CNE-1-RR cells significantly increased their sensitivity to radiotherapy.
Conclusions: The present investigation has unveiled the intricate mechanisms and physiological roles of YAP in CNE-1-RR cells exhibiting resistance to IR. Based on our findings, it can be inferred that a combinational therapeutic strategy involving radiotherapy and inhibitors that impede the nuclear translocation of YAP holds promising potential for treating radioresistant NPC.
Copyright © 2023. Published by Elsevier Inc.