Different sources of factors in environment can affect the spread of COVID-19 by influencing the diffusion of the virus transmission, but the collective influence of which has hardly been considered. This study aimed to utilize a machine learning algorithm to assess the joint effects of meteorological variables, demographic factors, and government response measures on COVID-19 daily cases globally at city level. Random forest regression models showed that population density was the most crucial determinant for COVID-19 transmission, followed by meteorological variables and response measures. Ultraviolet radiation and temperature dominated meteorological factors, but the associations with daily cases varied across different climate zones. Policy response measures have lag effect in containing the epidemic development, and the pandemic was more effectively contained with stricter response measures implemented, but the generalized measures might not be applicable to all climate conditions. This study explored the roles of demographic factors, meteorological variables, and policy response measures in the transmission of COVID-19, and provided evidence for policymakers that the design of appropriate policies for prevention and preparedness of future pandemics should be based on local climate conditions, population characteristics, and social activity characteristics. Future work should focus on discerning the interactions between numerous factors affecting COVID-19 transmission.
Keywords: COVID-19; Government response measures; Joint effect; Machine learning; Meteorological variables; Random forest regression.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.