Raising the ambient temperature of the operating theatre is common practice during burn surgeries to maintain the patient's core body temperature; however, the effects of operating in the heat on cognitive performance, manual dexterity, and perceived workload of surgical staff have not been assessed in a real-world context. Therefore, the aim was to assess the real-time impact of heat during burn surgeries on staff's cognitive function, manual dexterity, and perceptual measures (workload, thermal sensation, thermal comfort, perceived exertion, and fatigue) and physiological parameters (core temperature, heart-rate, fluid loss, and dehydration). Ten burn surgery staff members were assessed in CON (24.0±1.1°C, 45±6% relative humidity [RH]) and HOT (30.8±1.6°C, 39±7% RH) burn surgeries (average 150 min duration). Cognitive performance, manual dexterity, and perceptual measures were recorded pre- and post-surgery, while physiological parameters were recorded throughout surgery. HOT conditions did not significantly affect manual dexterity or cognitive function (p > .05), however HOT resulted in heat strain (increased heart-rate, core temperature, and fluid loss: p < .05), and increased subjective workload, discomfort, perceived exertion, and fatigue compared to CON conditions (p < .05). Cognitive function and manual dexterity were maintained in hot conditions, suggesting that operating in approximately 31°C heat is a safe approach for patient treatment. However, job burnout, which is positively correlated with perceived workload, and the impact of cumulative fatigue on the mental health of surgery staff, must be considered in the context of supporting an effective health workforce.
Copyright: © 2023 Palejwala et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.