Knocking down NSUN5 inhibits the development of clear cell renal cell carcinoma by inhibiting the p53 pathway

Aging (Albany NY). 2023 Jun 1;15(11):4757-4773. doi: 10.18632/aging.204761. Epub 2023 Jun 1.

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most common solid renal tumor. NSUN5, a gene encoding cytosine-5 RNA methyltransferase, has rarely been reported associated with cancer. A bioinformatics analysis revealed that NSUN5 was overexpressed in ccRCC. Gene Ontology and gene set variation analyses showed that NSUN5 was associated with tumor immunity in ccRCC. The effect of immunosuppressive treatment was superior in the low-risk group compared to the high-risk group, and higher stromal score in the high-risk group relative to the low-risk group. A drug sensitivity analysis revealed that the high-risk group was more sensitive to 5-fluorouracil, mitomycin C, methotrexate, and 17-AAG, whereas the low-risk group was more sensitive to crizotinib, sorafenib, foretinib, and ivozanib. NSUN5 knockout decreased ccRCC cell proliferation. The migration speed and number of invasive cells further decreased. The percentage of apoptotic cells increased. In NSUN5-knockout cells, the levels of BAX, caspase-8, caspase-9, and p53 increased significantly, whereas those of Bcl2, CCND1, CCND3, and MMP9 decreased significantly. NSUN5 is highly expressed in ccRCC and inhibits cancer cell invasion, proliferation, and migration while promoting apoptosis by activating the p53 signaling pathway. This study provides insights into the mechanisms of action of NSUN5 in urological tumors and may contribute to improving ccRCC treatment options.

Keywords: NSUN5; cell biological phenotype; clear cell renal cell carcinoma; p53 pathway; prognostic model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Renal Cell* / drug therapy
  • Carcinoma, Renal Cell* / genetics
  • Carcinoma, Renal Cell* / metabolism
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Kidney / pathology
  • Kidney Neoplasms* / drug therapy
  • Kidney Neoplasms* / genetics
  • Kidney Neoplasms* / metabolism
  • Methyltransferases / genetics
  • Muscle Proteins / metabolism
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Tumor Suppressor Protein p53
  • NSUN5 protein, human
  • Methyltransferases
  • Muscle Proteins