The macrocycle effect of [2]rotaxane on the highly trans-stereoselective cyclization reaction of N-benzylfumaramide was extensively investigated by various computational methods, including DFT and high-level DLPNO-CCSD(T) methods. Our computational results suggest that the most favorable mechanism of the CsOH-promoted cyclization of the fumaramide into trans-β-lactam within [2]rotaxane initiates with deprotonation of a N-benzyl group of the interlocked fumaramide substrate by CsOH, followed by the trans-selective C-C bond formation and protonation by one amide functional group of the macrocycle. Our distortion/interaction analysis further shows that the uncommon trans-stereoselective cyclization forming β-lactam within the rotaxane may be attributed to a higher distortion energy (mainly from the distortion of the twisted cis-fumaramide conformation enforced by the rotaxane). Our systematic study should give deeper mechanistic insight into the reaction mechanism influenced by a supramolecular host.