Angina pectoris remains a significant burden despite advances in medical therapy and coronary revascularization. Many patients (up to 30%) with angina have normal coronary arteries, with coronary microvascular disease and/or coronary artery vasospasm being major drivers of the myocardial demand-supply mismatch. Even among patients revascularized for symptomatic epicardial coronary stenosis, recurrent angina remains highly prevalent. Medical therapy for angina currently centers around 2 disparate goals, viz secondary prevention of hard clinical outcomes and symptom control. Vasodilators, such as nitrates, have been first-line antianginal agents for decades, along with beta-blockers and calcium channel blockers. However, efficacy in symptoms control is heterogenous, depending on underlying mechanism(s) of angina in an individual patient, often necessitating multiple agents. Nicorandil (NCO) is an antianginal agent first discovered in the late 1970s with a uniquely dual mechanism of action. Like a typical nitrate, it mediates medium-large vessel vasodilation through nitric oxide. In addition, NCO has adenosine triphosphate (ATP)-dependent potassium channel agonist activity (K ATP ), mediating microvascular dilatation. Hence, it has proven effective in both coronary artery vasospasm and coronary microvascular disease, typically challenging patient populations. Moreover, emerging evidence suggests that cardiomyocyte protection against ischemia through ischemic preconditioning may be mediated through K ATP agonism. Finally, there is now fairly firm evidence in favor of NCO in terms of hard event reduction among patients with stable coronary artery disease, following myocardial infarction, and perhaps even among patients with congestive heart failure. This review aims to summarize the mechanism of action of NCO, its efficacy as an antianginal, and current evidence behind its impact on hard outcomes. Finally, we review other cardiac and emerging noncardiac indications for NCO use.
Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.