Due to the increase in pollution, the number of deaths caused by lung disease is rising rapidly. It is essential to predict the disease in earlier stages by means of high-level knowledge and acquaintance. Deep learning-based lung cancer prediction plays a vital role in assisting the medical practioners for diagnosing lung cancer in earlier stage. Computer-Aided diagnosis is considered to bring a boost to the field of medicine by tying it to automated systems. In this research paper, several models are experimented by using chest X-ray image or CT scan as an input to detect a particular disease. This research work is carried out to identify the best performing deep learning techniques for lung disease prediction. The performance of the method is evaluated using various performance metrics, such as precision, recall, accuracy and Jaccard index.
Keywords: Deep learning; Lung cancer detection; Neural networks; Transfer learning.
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.