New training load metrics in field hockey using inertial measurement units

Eur J Sport Sci. 2023 Nov;23(11):2191-2199. doi: 10.1080/17461391.2023.2214786. Epub 2023 May 28.

Abstract

Field hockey players are exposed to high biomechanical loads. These loads often cannot be adequately estimated with global navigational satellite systems (GNSS) since on-field displacements during these movements are often small. Therefore, this study aims to explore the potential of different proxies of biomechanical load in field hockey with use of a simple inertial measurement unit (IMU) system. Sixteen field hockey players performed a range of field hockey specific exercises, including running with stick on the ground, running upright, and different types of shots and passes. All exercises were performed at two different frequencies (i.e. number of actions per minute). A variety of proxies of biomechanical load (time spent with forward tilted pelvis, time spent in lunge position, time spent with flexed thighs, and Hip Load) were obtained using wearable IMUs. In addition, total distance was quantified using a GNSS system. Linear mixed models were constructed to determine the effects of the different exercises and action frequency on all quantified metrics. All metrics increased approximately proportional to the increase in action frequency. Total distance and Hip Load were greatest for the running exercises, but the different types of shots and passes had greater effects on specific on the times spent in the demanding body postures. This shows that these proxies of biomechanical load can be used to estimate field hockey-specific biomechanical loads. The use of these metrics may provide coaches and medical staff with a more complete view of the training load that field hockey players experience.Highlights New proxies of biomechanical load derived with inertial measurement units were used to quantify field hockey specific biomechanical loads.These new biomechanical metrics are complementary to metrics obtained with global navigation satellite systems and increased proportionally to a doubling of the exercise intensity.The presented biomechanical load metrics can help field hockey coaches to achieve a better balance between load and recovery for their players.

Keywords: Biomechanical load; external load; kinematics; team sports.

MeSH terms

  • Exercise
  • Geographic Information Systems
  • Hockey*
  • Humans