Balancing Functional Tradeoffs between Protein Stability and ACE2 Binding in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic and Energetic Changes

Viruses. 2023 May 10;15(5):1143. doi: 10.3390/v15051143.

Abstract

Evolutionary and functional studies suggested that the emergence of the Omicron variants can be determined by multiple fitness trade-offs including the immune escape, binding affinity for ACE2, conformational plasticity, protein stability and allosteric modulation. In this study, we systematically characterize conformational dynamics, structural stability and binding affinities of the SARS-CoV-2 Spike Omicron complexes with the host receptor ACE2 for BA.2, BA.2.75, XBB.1 and XBB.1.5 variants. We combined multiscale molecular simulations and dynamic analysis of allosteric interactions together with the ensemble-based mutational scanning of the protein residues and network modeling of epistatic interactions. This multifaceted computational study characterized molecular mechanisms and identified energetic hotspots that can mediate the predicted increased stability and the enhanced binding affinity of the BA.2.75 and XBB.1.5 complexes. The results suggested a mechanism driven by the stability hotspots and a spatially localized group of the Omicron binding affinity centers, while allowing for functionally beneficial neutral Omicron mutations in other binding interface positions. A network-based community model for the analysis of epistatic contributions in the Omicron complexes is proposed revealing the key role of the binding hotspots R498 and Y501 in mediating community-based epistatic couplings with other Omicron sites and allowing for compensatory dynamics and binding energetic changes. The results also showed that mutations in the convergent evolutionary hotspot F486 can modulate not only local interactions but also rewire the global network of local communities in this region allowing the F486P mutation to restore both the stability and binding affinity of the XBB.1.5 variant which may explain the growth advantages over the XBB.1 variant. The results of this study are consistent with a broad range of functional studies rationalizing functional roles of the Omicron mutation sites that form a coordinated network of hotspots enabling a balance of multiple fitness tradeoffs and shaping up a complex functional landscape of virus transmissibility.

Keywords: ACE2 host receptor; Omicron subvariants; SARS-CoV-2 spike protein; allosteric communications; binding energetics; epistasis; molecular dynamics; mutational scanning; network analysis; protein stability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin-Converting Enzyme 2* / genetics
  • COVID-19*
  • Humans
  • Mutation
  • Protein Binding
  • Protein Stability
  • SARS-CoV-2 / genetics
  • Spike Glycoprotein, Coronavirus / genetics

Substances

  • Angiotensin-Converting Enzyme 2
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2

Supplementary concepts

  • SARS-CoV-2 variants

Grants and funding

This research was funded by KAY FAMILY FOUNDATION, grant number A20-0032.