Numerical Analysis of Fracture Behaviour for Cracked Joints in Corrugated Plate Girders Repaired by Stop-Holes

Materials (Basel). 2023 May 9;16(10):3606. doi: 10.3390/ma16103606.

Abstract

The efficient crack eliminated stop-hole measure was proposed to repair and reduce the stress concentration associated fracture risk of the corrugated plate girders by setting it at the critical joint of flange plate with tightened bolts and gaskets under preloading. To investigate the fracture behaviour of these repaired girders, parametric finite element analysis was conducted, focusing on the mechanical feature and stress intensity factor of crack stop-hole in this paper. The numerical model was verified against experimental results first, and then the stress characteristics due to the presence of crack open-hole were analysed. It was found that the moderate-sized open-hole was more effective than the over-sized open-hole in the reduction of stress concentration. For the model with prestressed crack stop-hole through bolt preloading, the stress concentration was nearly 50% with the prestress around open-hole increased to 46 MPa, but such a reduction is inconspicuous for even higher prestress. Relatively high circumferential stress gradients and the crack open angle of oversized crack stop-holes were decreased owing to additional prestress effects from the gasket. Finally, the shift from the original tensile area around the edge of the crack open-hole that was prone to fatigue cracking to a compression-oriented area is beneficial for the reduction of stress intensity factor of the prestressed crack stop-holes. It was also demonstrated that the enlargement of crack open-hole has limited influence on the reduction of stress intensity factor and crack propagation. In contrast, higher bolt prestress was more beneficial in consistently reducing the stress intensity factor of the model with the crack open-hole, even containing long crack.

Keywords: corrugated plate girder; cracked joint; fracture; numerical analysis; stop-hole; stress intensity factor.