Radiation environment in high-altitude Antarctic plateau: Recent measurements and model studies

Sci Total Environ. 2023 Sep 10:890:164304. doi: 10.1016/j.scitotenv.2023.164304. Epub 2023 May 23.

Abstract

Polar regions are the most exposed to secondary particles and radiation produced by primary cosmic rays in the atmosphere, because naturally they are with marginal geomagnetic shielding. In addition, the secondary particle flux contributing to the complex radiation field is enhanced at high-mountain altitudes compared to sea level because of the reduced atmospheric attenuation. At present, there are very few systematic experimental measurements of environmental dose at high southern latitudes, specifically at high-altitude region. Here, we report a campaign of measurements with different devices, that is passive and Liulin-type dosimeters, of the radiation background at high-mountain Antarctic station Vostok (3488 m above sea level, 78° 27' S; 106° 50' E). We compare the measurements with a Monte Carlo-based model for the propagation of the cosmic rays through the atmosphere and assessment of the radiation field in the atmosphere. We employed the model to estimate the radiation dose at Vostok station during the ground-level enhancement at 28 October 2021. As in previous studies by other teams, we show that the annual dose equivalent at high-altitude Antarctic facilities can significantly exceed the limit of 1 mSv established for the general population by the ICRP.

Keywords: Antarctica; Cosmic rays; Ground-level enhancement; High altitudes; Liulin dosimeter; Natural radiation background; Passive detectors; Personnel dosimetry.