Learning and Predicting from Dynamic Models for COVID-19 Patient Monitoring

Stat Sci. 2022 May;37(2):251-265. doi: 10.1214/22-sts861. Epub 2022 May 16.

Abstract

COVID-19 has challenged health systems to learn how to learn. This paper describes the context, methods and challenges for learning to improve COVID-19 care at one academic health center. Challenges to learning include: (1) choosing a right clinical target; (2) designing methods for accurate predictions by borrowing strength from prior patients' experiences; (3) communicating the methodology to clinicians so they understand and trust it; (4) communicating the predictions to the patient at the moment of clinical decision; and (5) continuously evaluating and revising the methods so they adapt to changing patients and clinical demands. To illustrate these challenges, this paper contrasts two statistical modeling approaches - prospective longitudinal models in common use and retrospective analogues complementary in the COVID-19 context - for predicting future biomarker trajectories and major clinical events. The methods are applied to and validated on a cohort of 1,678 patients who were hospitalized with COVID-19 during the early months of the pandemic. We emphasize graphical tools to promote physician learning and inform clinical decision making.

Keywords: decision support; inverse regression; longitudinal data analysis; prediction; statistical graphics.