Inhibition of endolysosome fusion increases exosome secretion

J Cell Biol. 2023 Jun 5;222(6):e202209084. doi: 10.1083/jcb.202209084. Epub 2023 May 22.

Abstract

Exosomes are small vesicles that are secreted from cells to dispose of undegraded materials and mediate intercellular communication. A major source of exosomes is intraluminal vesicles within multivesicular endosomes that undergo exocytic fusion with the plasma membrane. An alternative fate of multivesicular endosomes is fusion with lysosomes, resulting in degradation of the intraluminal vesicles. The factors that determine whether multivesicular endosomes fuse with the plasma membrane or with lysosomes are unknown. In this study, we show that impairment of endolysosomal fusion by disruption of a pathway involving the BLOC-one-related complex (BORC), the small GTPase ARL8, and the tethering factor HOPS increases exosome secretion by preventing the delivery of intraluminal vesicles to lysosomes. These findings demonstrate that endolysosomal fusion is a critical determinant of the amount of exosome secretion and suggest that suppression of the BORC-ARL8-HOPS pathway could be used to boost exosome yields in biotechnology applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Intramural

MeSH terms

  • ADP-Ribosylation Factors / metabolism
  • Cell Membrane / metabolism
  • Endosomes* / metabolism
  • Exosomes* / metabolism
  • Lysosomes* / metabolism
  • Membrane Proteins / metabolism
  • Multivesicular Bodies / metabolism

Substances

  • ADP-Ribosylation Factors
  • Membrane Proteins