Targeting peroxisome proliferator-activated receptor γ proteasomal degradation by magnolol is a potential avenue for adipogenesis-mediated metabolic homeostasis

Obesity (Silver Spring). 2023 Jun;31(6):1584-1599. doi: 10.1002/oby.23727.

Abstract

Objective: Adipogenesis has been recognized as an attractive avenue for maintaining systemic homeostasis, with peroxisome proliferator-activated receptor γ (PPARγ) showing predominant roles in this process. This study aims to identify promising drug candidates by targeting PPARγ for adipogenesis-based metabolic homeostasis and to clarify the detailed mechanisms.

Methods: Molecular events contributing to adipogenesis were screened, which identified PPARγ as having the predominant role. Promising agents of adipogenesis agonism were screened using a PPARγ-based luciferase reporter assay. The functional capacity and molecular mechanisms of magnolol were intensively examined using 3T3-L1 preadipocytes and dietary models.

Results: This study found that F-box only protein 9 (FBXO9)-mediated lysine 11 (K11)-linked ubiquitination and proteasomal degradation of PPARγ are critically required during adipogenesis and systemic homeostasis. Notably, magnolol was identified as a potent adipogenesis activator by stabilizing PPARγ. The pharmacological mechanisms investigations clarified that magnolol directly binds to PPARγ and markedly interrupts its interaction with FBXO9, leading to a decline in K11-linked ubiquitination and proteasomal degradation of PPARγ. Clinically important, magnolol treatment significantly facilitates adipogenesis in vitro and in vivo.

Conclusions: The downregulation of K11-linked ubiquitination of PPARγ caused by FBOX9 is essentially required for adipogenesis, while targeting PPARγ-FBXO9 interaction provides a new avenue for the therapy of adipogenesis-related metabolic disorder.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3-L1 Cells
  • Adipogenesis*
  • Animals
  • Biphenyl Compounds / pharmacology
  • F-Box Proteins*
  • Homeostasis
  • Mice
  • PPAR gamma / genetics
  • PPAR gamma / metabolism

Substances

  • PPAR gamma
  • magnolol
  • Biphenyl Compounds
  • FBXO9 protein, mouse
  • F-Box Proteins