Objective: Adipogenesis has been recognized as an attractive avenue for maintaining systemic homeostasis, with peroxisome proliferator-activated receptor γ (PPARγ) showing predominant roles in this process. This study aims to identify promising drug candidates by targeting PPARγ for adipogenesis-based metabolic homeostasis and to clarify the detailed mechanisms.
Methods: Molecular events contributing to adipogenesis were screened, which identified PPARγ as having the predominant role. Promising agents of adipogenesis agonism were screened using a PPARγ-based luciferase reporter assay. The functional capacity and molecular mechanisms of magnolol were intensively examined using 3T3-L1 preadipocytes and dietary models.
Results: This study found that F-box only protein 9 (FBXO9)-mediated lysine 11 (K11)-linked ubiquitination and proteasomal degradation of PPARγ are critically required during adipogenesis and systemic homeostasis. Notably, magnolol was identified as a potent adipogenesis activator by stabilizing PPARγ. The pharmacological mechanisms investigations clarified that magnolol directly binds to PPARγ and markedly interrupts its interaction with FBXO9, leading to a decline in K11-linked ubiquitination and proteasomal degradation of PPARγ. Clinically important, magnolol treatment significantly facilitates adipogenesis in vitro and in vivo.
Conclusions: The downregulation of K11-linked ubiquitination of PPARγ caused by FBOX9 is essentially required for adipogenesis, while targeting PPARγ-FBXO9 interaction provides a new avenue for the therapy of adipogenesis-related metabolic disorder.
© 2023 The Obesity Society.