Glioblastoma multiforme (GBM) is a highly malignant brain tumor where new biomarkers and drug targets are much needed in the oncology clinic. miR-433 was identified as a tumor-suppressing miRNA in several different types of human cancer. However, the integrative biology of miR-433 in GBM is still largely unknown. By analyzing the expression profiles of miR-433 in 198 patients with glioma at The Cancer Genome Atlas, we found that the miR-433 expression was decreased in glioma whereas the low expression of miR-433 was significantly associated with shorter overall survival. We then conducted in vitro studies and demonstrated that increased expression of miR-433 suppressed the proliferation, migration, and invasion of LN229 and T98G cells, two representative glioma cell lines. Further, using in vivo mouse model, we found that upregulation of miR-433 inhibited the tumor growth of glioma cells. To situate the integrative biology understanding of the action of miR-433 in glioma, we identified ERBB4 as a gene targeted directly by miR-433 in LN229 and T98G cells. Overexpressed ERBB4 rescued the phenotype caused by overexpression of miR-433. Finally, we showed that miR-433 suppressed the PI3K/Akt pathway in glioma cells. In conclusion, our study demonstrated that miR-433 could potentially act as a tumor suppressor for GBM and may serve as a potential therapeutic target for GBM. Further integrative biology and clinical translational research are warranted to evaluate miR-433 in GBM.
Keywords: ERBB4; PI3K/Akt signaling pathway; cancer research; drug targets; glioblastoma; miR-433.