Previous studies have shown that type-II magnetic-domain contrasts are caused by differences in the backscattering yields of magnetic domains of opposite magnetisation. Imaging the magnetic domains when the magnetisation vectors in the opposite-magnetisation domains are perpendicular to the tilt axis of the specimen has been considered difficult, because of the lack of change in the backscattering yields between the domains. An alternative way to obtain the type-II magnetic-domain contrasts is to utilise the difference in the exit angular distribution of the backscattered electrons from different magnetic domains. In this study, it is found that an electron backscatter diffraction (EBSD) camera can be used to obtain the type-II magnetic-domain contrasts caused by the above two mechanisms simultaneously. We verify this by distinguishing all four possible in-plane magnetisation vectors on a Fe-Si (001) surface without a sample rotation, using an EBSD detector as an array of electron detectors. The change in contrast between the magnetic domains, with respect to the location of a virtual electron detector, can provide information on the directions of the magnetisation vectors. A method to suppress the topographic contrast superimposed on the magnetic-domain contrast is also demonstrated.
Keywords: EBSD; Electrical steel; Magnetic-domain contrast.
Copyright © 2023 Elsevier B.V. All rights reserved.