Transition metal-catalyzed hydrofunctionalization of methylenecyclopropanes (MCPs) has presented a considerable challenge due to the difficult manipulation of regioselectivity and complicated reaction patterns. Herein, we report a straightforward Pd-catalyzed ring-opening hydrophosphinylation reaction of MCPs via highly selective C-C bond cleavage. This method allows for rapid and efficient access to a wide range of chiral allylic phosphine oxides in good yields and high enantioselectivities. Additionally, density functional theory (DFT) calculations were performed to elucidate the reaction mechanism and the origin of enantioselectivity.
Keywords: C−C Bond Cleavage; C−P Bond Formation; DFT Calculations; Hydrophosphinylation; Phosphine.
© 2023 Wiley-VCH GmbH.