Background: Sleep disorders are common among the aging population and people with neurodegenerative diseases. Sleep disorders have a strong bidirectional relationship with neurodegenerative diseases, where they accelerate and worsen one another. Although one-to-one individual cognitive behavioral interventions (conducted in-person or on the internet) have shown promise for significant improvements in sleep efficiency among adults, many may experience difficulties accessing interventions with sleep specialists, psychiatrists, or psychologists. Therefore, delivering sleep intervention through an automated chatbot platform may be an effective strategy to increase the accessibility and reach of sleep disorder intervention among the aging population and people with neurodegenerative diseases.
Objective: This work aims to (1) determine the feasibility and usability of an automated chatbot (named MotivSleep) that conducts sleep interviews to encourage the aging population to report behaviors that may affect their sleep, followed by providing personalized recommendations for better sleep based on participants' self-reported behaviors; (2) assess the self-reported sleep assessment changes before, during, and after using our automated sleep disturbance intervention chatbot; (3) assess the changes in objective sleep assessment recorded by a sleep tracking device before, during, and after using the automated chatbot MotivSleep.
Methods: We will recruit 30 older adult participants from West London for this pilot study. Each participant will have a sleep analyzer installed under their mattress. This contactless sleep monitoring device passively records movements, heart rate, and breathing rate while participants are in bed. In addition, each participant will use our proposed chatbot MotivSleep, accessible on WhatsApp, to describe their sleep and behaviors related to their sleep and receive personalized recommendations for better sleep tailored to their specific reasons for disrupted sleep. We will analyze questionnaire responses before and after the study to assess their perception of our proposed chatbot; questionnaire responses before, during, and after the study to assess their subjective sleep quality changes; and sleep parameters recorded by the sleep analyzer throughout the study to assess their objective sleep quality changes.
Results: Recruitment will begin in May 2023 through UK Dementia Research Institute Care Research and Technology Centre organized community outreach. Data collection will run from May 2023 until December 2023. We hypothesize that participants will perceive our proposed chatbot as intelligent and trustworthy; we also hypothesize that our proposed chatbot can help improve participants' subjective and objective sleep assessment throughout the study.
Conclusions: The MotivSleep automated chatbot has the potential to provide additional care to older adults who wish to improve their sleep in more accessible and less costly ways than conventional face-to-face therapy.
International registered report identifier (irrid): PRR1-10.2196/45752.
Keywords: automated chatbot; behavior analysis; conversational agents; older adults; sleep disorders; sleep interview.
©Ting Su, Rafael A Calvo, Melanie Jouaiti, Sarah Daniels, Pippa Kirby, Derk-Jan Dijk, Ciro della Monica, Ravi Vaidyanathan. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 11.05.2023.