Purpose: Fetoscopic laser coagulation for twin-to-twin transfusion syndrome is challenging for anterior placenta due to the rigidity of current tools. The capacity to keep entry port forces minimal is critical for this procedure, as is optimal coagulation distance and orientation. This work introduces technological tools to this end.
Methods: A novel fetoscope is presented with a rigid shaft and a flexible steerable segment at the distal end. The steerable segment can bend up to 90[Formula: see text] even when loaded with a laser fiber. An artificial pneumatic muscle makes such acute bending possible while allowing for a low-weight and disposable device.
Results: The flexible fetoscope was validated in a custom-made phantom model to measure visual range and coagulation efficacy. The flexible fetoscope shows promising results when compared to a clinical rigid curved fetoscope to reach anterior targets. The new fetoscope was then evaluated in vivo (pregnant ewe) where it successfully coagulated placental vasculature.
Conclusion: The flexible fetoscope improved the ability to achieve optimal coagulation angle and distance on anteriorly located targets. The fetoscope also showed the potential to lead fetoscopic laser coagulation and other fetal surgical procedures toward safer and more effective interventions.
Keywords: Artificial muscle; Flexible fetoscope; In vivo validation; Steerable endoscopes; Twin-to-twin transfusion syndrome.
© 2023. CARS.