Microbial resistance to drugs is a public health problem; therefore, there is a search for alternatives to replace conventional products with natural agents. One of the potential antimicrobial agents is wood vinegar derived from the carbonization of lignocellulosic raw materials. The objectives of the present work were to evaluate the antibacterial and antifungal action of two kinds of wood vinegar (WV), one of Eucalyptus urograndis wood and another of Bambusa vulgaris biomass, and determine their chemical profile. The antimicrobial effect was assessed against Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enteritidis, Escherichia coli, Streptococcus agalactiae, and Candida albicans. The minimum inhibitory concentration and the minimum bactericidal and fungicidal concentrations were determined. Micrographs of the microorganisms before and after exposure to both kinds of wood vinegar were obtained by scanning electron microscopy. The chemical profile of the eucalyptus and bamboo vinegar was carried out by gas chromatography and mass spectrometry (GC/MS). Both types of WV presented significant antimicrobial activity, with the bamboo one having a higher efficiency. Both studied pyroligneous extracts seem promising for developing natural antimicrobials due to their efficiency against pathogens. GC/MS analyses demonstrated that the chemical profiles of both kinds of WV were similar but with some significant differences. The major component of the eucalyptus vinegar was furfural (17.2%), while the bamboo WV was phenol (15.3%). Several compounds in both WVs have proven antimicrobial activity, such as acetic acid, furfural, phenol, cresols, guaiacol, and xylenols. Together, they are the major in the chemical composition of the organic fraction of both WVs. Bamboo vinegar had a more expressive content of organic acids. Micrographs of microorganisms taken after exposure to both kinds of wood vinegar displayed several cell modifications. The potential of both types of wood vinegar as a basis for natural antimicrobial products seems feasible due to their proven effect on inhibiting the microorganisms' growth assessed in this experiment.
Keywords: Antimicrobial properties; Bamboo biomass; Carbonization process; Carbonization vinegar; Eucalyptus wood; Pyroligneous acid.
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.